Shallow-curved shell structure with geometric nonlinearities

Shallow-curved shell structure with geometric nonlinearities

Contents

References

Finite element model used in the following reference:

Jain, S., & Tiso, P. (2018). Simulation-free hyper-reduction for geometrically nonlinear structural dynamics: a quadratic manifold lifting approach. Journal of Computational and Nonlinear Dynamics, 13(7), 071003. <https://doi.org/10.1115/1.4040021>

Finite element code taken from the following package:

Jain, S., Marconi, J., Tiso P. (2020). YetAnotherFEcode (Version v1.1). Zenodo. <http://doi.org/10.5281/zenodo.4011282>

System parameters

clear all
nDiscretization = 10; % Discretization parameter (#DOFs is proportional to the square of this number)
epsilon = 0.1; % converge at order 5

Generate model

[M,C,K,fnl,f_0,outdof] = build_model(nDiscretization);
n = length(M); % number of degrees of freedom
disp(['Number of degrees of freedom = ' num2str(n)])
disp(['Phase space dimensionality = ' num2str(2*n)])
Building FE model
Assembling M,C,K matrices
Applying boundary conditions
Solving undamped eigenvalue problem
Using Rayleigh damping
Assembling external force vector
Getting nonlinearity coefficients
Loaded tensors from storage
Total time spent on model assembly = 00:00:50
Number of degrees of freedom = 1320
Phase space dimensionality = 2640

Dynamical system setup

We consider the forced system

which can be written in the first-order form as

where

.

order = 2;
DS = DynamicalSystem(order);
set(DS,'M',M,'C',C,'K',K,'fnl',fnl);
set(DS.Options,'Emax',5,'Nmax',10,'notation','multiindex')

We assume periodic forcing of the form

Fourier coefficients of Forcing

kappas = [-1; 1];
coeffs = [f_0 f_0]/2;
DS.add_forcing(coeffs, kappas,epsilon);

Linear Modal analysis and SSM setup

[V,D,W] = DS.linear_spectral_analysis();
Due to high-dimensionality, we compute only the first 5 eigenvalues with the smallest magnitude. These would also be used to compute the spectral quotients
Assuming a proportional damping hypthesis with symmetric matrices
modal damping ratio for 1 mode is 2.000000e-03
modal damping ratio for 2 mode is 2.000000e-03
modal damping ratio for 3 mode is 2.102524e-03
modal damping ratio for 4 mode is 2.141338e-03
modal damping ratio for 5 mode is 2.369557e-03
the left eigenvectors may be incorrect in case of asymmetry of matrices

 The first 10 nonzero eigenvalues are given as 
   1.0e+02 *

  -0.0030 + 1.4922i
  -0.0030 - 1.4922i
  -0.0060 + 2.9878i
  -0.0060 - 2.9878i
  -0.0071 + 3.3973i
  -0.0071 - 3.3973i
  -0.0076 + 3.5356i
  -0.0076 - 3.5356i
  -0.0101 + 4.2617i
  -0.0101 - 4.2617i

Choose Master subspace (perform resonance analysis)

S = SSM(DS);
set(S.Options, 'reltol', 0.1,'notation','multiindex')
% set(S.Options, 'reltol', 0.1,'notation','tensor')
masterModes = [1,2,3,4];
S.choose_E(masterModes);
The master subspace contains the following eigenvalues
 
lambda1 == - 0.2984479 + 149.2236i
 
lambda2 == (-0.2984479) - 149.2236i
 
lambda3 == - 0.5975624 + 298.7806i
 
lambda4 == (-0.5975624) - 298.7806i
 
No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 3
(near) inner resonance detected for the following combination of master eigenvalues:
 
0*lambda1 + 1*lambda2 + 1*lambda3 + 0*lambda4 == lambda1
 
1*lambda1 + 0*lambda2 + 1*lambda3 + 1*lambda4 == lambda1
 
2*lambda1 + 1*lambda2 + 0*lambda3 + 0*lambda4 == lambda1
 
1*lambda1 + 0*lambda2 + 0*lambda3 + 1*lambda4 == lambda2
 
0*lambda1 + 1*lambda2 + 1*lambda3 + 1*lambda4 == lambda2
 
1*lambda1 + 2*lambda2 + 0*lambda3 + 0*lambda4 == lambda2
 
2*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 == lambda3
 
0*lambda1 + 0*lambda2 + 2*lambda3 + 1*lambda4 == lambda3
 
1*lambda1 + 1*lambda2 + 1*lambda3 + 0*lambda4 == lambda3
 
0*lambda1 + 2*lambda2 + 0*lambda3 + 0*lambda4 == lambda4
 
0*lambda1 + 0*lambda2 + 1*lambda3 + 2*lambda4 == lambda4
 
1*lambda1 + 1*lambda2 + 0*lambda3 + 1*lambda4 == lambda4
 
sigma_in = 3

Forced response curves using SSMs

Obtaining forced response curve in reduced-polar coordinate

order = 3;
set(S.Options, 'reltol', 0.5,'IRtol',0.05,'notation', 'multiindex','contribNonAuto',true)

choose frequency range around the first natural frequency

set(S.FRCOptions,'coordinates','polar','initialSolver','forward');
set(S.contOptions, 'h_min', 1e-2,'h_max',2,'PtMX',300);
omega0 = imag(S.E.spectrum(1));
omegaRange = omega0*[0.92 1.07];
mFreq = [1 2];

extract forced response curve

p0 = [omegaRange(1) epsilon]';
z0 = 1e-3*[1 1 1 1]';
S.SSM_isol2ep('isol-3',masterModes,order,mFreq,'freq',omegaRange,outdof,{p0,z0});
The master subspace contains the following eigenvalues
 
lambda1 == - 0.2984479 + 149.2236i
 
lambda2 == (-0.2984479) - 149.2236i
 
lambda3 == - 0.5975624 + 298.7806i
 
lambda4 == (-0.5975624) - 298.7806i
 
(near) outer resonance detected for the following combinations of master eigenvalues
 They are in resonance with the following eigenvalues of the slave subspace 
 
2*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 == - 0.7143022 + 339.7348i
 
0*lambda1 + 0*lambda2 + 2*lambda3 + 1*lambda4 == - 0.7143022 + 339.7348i
 
1*lambda1 + 1*lambda2 + 1*lambda3 + 0*lambda4 == - 0.7143022 + 339.7348i
 
0*lambda1 + 2*lambda2 + 0*lambda3 + 0*lambda4 == (-0.7143022) - 339.7348i
 
0*lambda1 + 0*lambda2 + 1*lambda3 + 2*lambda4 == (-0.7143022) - 339.7348i
 
1*lambda1 + 1*lambda2 + 0*lambda3 + 1*lambda4 == (-0.7143022) - 339.7348i
 
2*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 == - 0.7570953 + 353.561i
 
0*lambda1 + 0*lambda2 + 2*lambda3 + 1*lambda4 == - 0.7570953 + 353.561i
 
1*lambda1 + 1*lambda2 + 1*lambda3 + 0*lambda4 == - 0.7570953 + 353.561i
 
0*lambda1 + 2*lambda2 + 0*lambda3 + 0*lambda4 == (-0.7570953) - 353.561i
 
0*lambda1 + 0*lambda2 + 1*lambda3 + 2*lambda4 == (-0.7570953) - 353.561i
 
1*lambda1 + 1*lambda2 + 0*lambda3 + 1*lambda4 == (-0.7570953) - 353.561i
 
1*lambda1 + 0*lambda2 + 1*lambda3 + 0*lambda4 == - 1.009829 + 426.1665i
 
0*lambda1 + 1*lambda2 + 2*lambda3 + 0*lambda4 == - 1.009829 + 426.1665i
 
3*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 == - 1.009829 + 426.1665i
 
0*lambda1 + 1*lambda2 + 0*lambda3 + 1*lambda4 == (-1.009829) - 426.1665i
 
0*lambda1 + 3*lambda2 + 0*lambda3 + 0*lambda4 == (-1.009829) - 426.1665i
 
1*lambda1 + 0*lambda2 + 0*lambda3 + 2*lambda4 == (-1.009829) - 426.1665i
 
sigma_out = 3
(near) inner resonance detected for the following combination of master eigenvalues:
 
0*lambda1 + 1*lambda2 + 1*lambda3 + 0*lambda4 == lambda1
 
1*lambda1 + 0*lambda2 + 1*lambda3 + 1*lambda4 == lambda1
 
2*lambda1 + 1*lambda2 + 0*lambda3 + 0*lambda4 == lambda1
 
1*lambda1 + 0*lambda2 + 0*lambda3 + 1*lambda4 == lambda2
 
0*lambda1 + 1*lambda2 + 1*lambda3 + 1*lambda4 == lambda2
 
1*lambda1 + 2*lambda2 + 0*lambda3 + 0*lambda4 == lambda2
 
2*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 == lambda3
 
0*lambda1 + 0*lambda2 + 2*lambda3 + 1*lambda4 == lambda3
 
1*lambda1 + 1*lambda2 + 1*lambda3 + 0*lambda4 == lambda3
 
0*lambda1 + 2*lambda2 + 0*lambda3 + 0*lambda4 == lambda4
 
0*lambda1 + 0*lambda2 + 1*lambda3 + 2*lambda4 == lambda4
 
1*lambda1 + 1*lambda2 + 0*lambda3 + 1*lambda4 == lambda4
 
sigma_in = 3
Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:01
Estimated memory usage at order  2 = 1.52E+01 MB
Manifold computation time at order 3 = 00:00:04
Estimated memory usage at order  3 = 2.00E+01 MB

 Run='isol-3.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          2.47e+01  1.95e+02    0.0    0.0    0.0
   1   3  5.15e-02  8.19e+00  2.18e+01  1.95e+02    0.0    0.0    0.0
   2   4  7.70e-03  2.58e+01  2.14e+01  1.95e+02    0.0    0.0    0.0
   3   4  2.54e-02  8.05e+00  2.23e+01  1.95e+02    0.0    0.0    0.0
   4   2  2.01e-01  4.19e+00  2.21e+01  1.95e+02    0.0    0.0    0.0
   5   3  1.04e-01  4.52e+00  1.62e+01  1.95e+02    0.0    0.1    0.0
   6   2  5.00e-01  1.61e+00  1.27e+01  1.95e+02    0.0    0.1    0.0
   7   1  1.00e+00  6.79e-01  1.87e+00  1.95e+02    0.0    0.1    0.0
   8   1  1.00e+00  2.84e-02  1.21e-01  1.95e+02    0.0    0.1    0.0
   9   1  1.00e+00  1.71e-04  6.03e-04  1.95e+02    0.0    0.1    0.0
  10   1  1.00e+00  8.73e-07  1.52e-08  1.95e+02    0.0    0.1    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1         rho2          th1          th2          eps
    0  00:00:00   1.9480e+02      1  EP      1.3729e+02   1.8257e-03  -1.9374e-05   9.3997e+00   6.2084e+00   1.0000e-01
   10  00:00:01   1.9832e+02      2          1.3978e+02   2.3109e-03  -3.9086e-05   9.3930e+00   6.1886e+00   1.0000e-01
   20  00:00:01   2.0181e+02      3          1.4226e+02   3.1504e-03  -9.7874e-05   9.3812e+00   6.1543e+00   1.0000e-01
   30  00:00:01   2.0476e+02      4          1.4435e+02   4.6058e-03  -2.9548e-04   9.3597e+00   6.0941e+00   1.0000e-01
   40  00:00:02   2.0692e+02      5          1.4590e+02   7.9885e-03  -1.2747e-03   9.2965e+00   5.9429e+00   1.0000e-01
   50  00:00:02   2.0715e+02      6          1.4607e+02   1.0170e-02  -2.1632e-03   9.2434e+00   5.8335e+00   1.0000e-01
   52  00:00:02   2.0715e+02      7  SN      1.4607e+02   1.0370e-02  -2.2491e-03   9.2381e+00   5.8230e+00   1.0000e-01
   52  00:00:02   2.0715e+02      8  FP      1.4607e+02   1.0370e-02  -2.2491e-03   9.2381e+00   5.8230e+00   1.0000e-01
   60  00:00:03   2.0711e+02      9          1.4604e+02   1.1525e-02  -2.7508e-03   9.2068e+00   5.7617e+00   1.0000e-01
   70  00:00:03   2.0549e+02     10          1.4493e+02   2.0721e-02  -6.6023e-03   8.9307e+00   5.2358e+00   1.0000e-01
   80  00:00:03   2.0062e+02     11          1.4159e+02   3.9002e-02  -1.3080e-02   7.9663e+00   3.3419e+00   1.0000e-01
   83  00:00:04   2.0059e+02     12  FP      1.4158e+02   3.9122e-02  -1.3141e-02   7.9152e+00   3.2399e+00   1.0000e-01
   83  00:00:04   2.0059e+02     13  SN      1.4158e+02   3.9122e-02  -1.3141e-02   7.9152e+00   3.2399e+00   1.0000e-01
   90  00:00:04   2.0079e+02     14          1.4174e+02   3.8710e-02  -1.3132e-02   7.7161e+00   2.8408e+00   1.0000e-01
  100  00:00:04   2.0431e+02     15          1.4429e+02   2.8008e-02  -1.0421e-02   7.1018e+00   1.5904e+00   1.0000e-01
  105  00:00:05   2.1024e+02     16  HB      1.4851e+02   9.2835e-03  -6.4952e-03   6.8061e+00   7.2639e-01   1.0000e-01
  110  00:00:05   2.1089e+02     17          1.4896e+02   7.1732e-03  -7.0339e-03   7.0098e+00   8.4208e-01   1.0000e-01
  120  00:00:05   2.1201e+02     18          1.4966e+02   6.7811e-03  -7.7963e-03   8.4476e+00   1.9807e+00   1.0000e-01
  128  00:00:06   2.1263e+02     19  HB      1.5008e+02   8.9257e-03  -7.3949e-03   8.7516e+00   2.1929e+00   1.0000e-01
  130  00:00:06   2.1283e+02     20          1.5022e+02   9.6296e-03  -7.3882e-03   8.7873e+00   2.2045e+00   1.0000e-01
  140  00:00:06   2.1651e+02     21          1.5286e+02   2.3721e-02  -1.1735e-02   8.5044e+00   1.3785e+00   1.0000e-01
  150  00:00:06   2.1837e+02     22          1.5421e+02   3.1204e-02  -1.4754e-02   7.7457e+00  -1.6582e-01   1.0000e-01
  151  00:00:07   2.1837e+02     23  SN      1.5422e+02   3.1152e-02  -1.4699e-02   7.7170e+00  -2.2320e-01   1.0000e-01
  151  00:00:07   2.1837e+02     24  FP      1.5422e+02   3.1152e-02  -1.4699e-02   7.7170e+00  -2.2321e-01   1.0000e-01
  160  00:00:07   2.1761e+02     25          1.5370e+02   2.6140e-02  -1.1525e-02   7.1806e+00  -1.2858e+00   1.0000e-01
  170  00:00:07   2.1555e+02     26          1.5226e+02   1.0990e-02  -2.9825e-03   6.5057e+00  -2.5944e+00   1.0000e-01
  172  00:00:07   2.1555e+02     27  FP      1.5226e+02   1.0760e-02  -2.8585e-03   6.4981e+00  -2.6094e+00   1.0000e-01
  172  00:00:07   2.1555e+02     28  SN      1.5226e+02   1.0760e-02  -2.8585e-03   6.4981e+00  -2.6094e+00   1.0000e-01
  180  00:00:08   2.1560e+02     29          1.5229e+02   9.4945e-03  -2.1942e-03   6.4585e+00  -2.6896e+00   1.0000e-01
  190  00:00:08   2.1609e+02     30          1.5264e+02   7.1876e-03  -1.1193e-03   6.3975e+00  -2.8218e+00   1.0000e-01
  200  00:00:08   2.1794e+02     31          1.5394e+02   4.7208e-03  -3.4423e-04   6.3504e+00  -2.9419e+00   1.0000e-01
  210  00:00:09   2.2031e+02     32          1.5563e+02   3.4198e-03  -1.3193e-04   6.3306e+00  -2.9989e+00   1.0000e-01
  220  00:00:09   2.2315e+02     33          1.5763e+02   2.5927e-03  -5.7366e-05   6.3189e+00  -3.0340e+00   1.0000e-01
  229  00:00:09   2.2602e+02     34  EP      1.5967e+02   2.0856e-03  -2.9775e-05   6.3118e+00  -3.0553e+00   1.0000e-01

FRC in parametrisation space:

FRC in physical space:

Increase order to check convergence

order = 5;
sol = ep_read_solution('','isol-3.ep',1);
set(S.FRCOptions,'initialSolver','fsolve');
S.SSM_isol2ep('isol-5',masterModes,order,mFreq,'freq',omegaRange,outdof,{sol.p,sol.x});
Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:01
Estimated memory usage at order  2 = 1.52E+01 MB
Manifold computation time at order 3 = 00:00:04
Estimated memory usage at order  3 = 2.00E+01 MB
Manifold computation time at order 4 = 00:00:19
Estimated memory usage at order  4 = 3.14E+01 MB
Manifold computation time at order 5 = 00:01:14
Estimated memory usage at order  5 = 4.91E+01 MB

Equation solved, inaccuracy possible.

The vector of function values is near zero, as measured by the value
of the function tolerance. However, the last step was ineffective.


 Run='isol-5.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.89e-13  1.95e+02    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1         rho2          th1          th2          eps
    0  00:00:00   1.9465e+02      1  EP      1.3729e+02   1.8257e-03   1.9374e-05   3.1165e+00   9.3500e+00   1.0000e-01
   10  00:00:00   1.9817e+02      2          1.3978e+02   2.3109e-03   3.9085e-05   3.1098e+00   9.3302e+00   1.0000e-01
   20  00:00:00   2.0167e+02      3          1.4226e+02   3.1504e-03   9.7874e-05   3.0980e+00   9.2960e+00   1.0000e-01
   30  00:00:01   2.0461e+02      4          1.4435e+02   4.6060e-03   2.9549e-04   3.0765e+00   9.2359e+00   1.0000e-01
   40  00:00:01   2.0678e+02      5          1.4590e+02   7.9849e-03   1.2733e-03   3.0135e+00   9.0853e+00   1.0000e-01
   50  00:00:01   2.0701e+02      6          1.4607e+02   1.0180e-02   2.1685e-03   2.9601e+00   8.9756e+00   1.0000e-01
   52  00:00:02   2.0701e+02      7  SN      1.4607e+02   1.0379e-02   2.2540e-03   2.9549e+00   8.9653e+00   1.0000e-01
   52  00:00:02   2.0701e+02      8  FP      1.4607e+02   1.0379e-02   2.2540e-03   2.9549e+00   8.9653e+00   1.0000e-01
   60  00:00:02   2.0696e+02      9          1.4604e+02   1.1540e-02   2.7591e-03   2.9236e+00   8.9041e+00   1.0000e-01
   70  00:00:02   2.0538e+02     10          1.4496e+02   2.0617e-02   6.5876e-03   2.6555e+00   8.3955e+00   1.0000e-01
   80  00:00:03   1.9989e+02     11          1.4119e+02   4.1301e-02   1.4043e-02   1.6514e+00   6.4331e+00   1.0000e-01
   82  00:00:03   1.9988e+02     12  SN      1.4118e+02   4.1370e-02   1.4081e-02   1.6184e+00   6.3671e+00   1.0000e-01
   82  00:00:03   1.9988e+02     13  FP      1.4118e+02   4.1370e-02   1.4081e-02   1.6184e+00   6.3671e+00   1.0000e-01
   90  00:00:03   2.0006e+02     14          1.4133e+02   4.0923e-02   1.4043e-02   1.4379e+00   6.0051e+00   1.0000e-01
  100  00:00:03   2.0385e+02     15          1.4406e+02   2.9134e-02   1.0860e-02   8.3227e-01   4.7670e+00   1.0000e-01
  106  00:00:04   2.1009e+02     16  HB      1.4851e+02   9.2759e-03   6.5035e-03   5.2382e-01   3.8689e+00   1.0000e-01
  110  00:00:04   2.1070e+02     17          1.4893e+02   7.2835e-03   6.9855e-03   7.0773e-01   3.9708e+00   1.0000e-01
  120  00:00:04   2.1167e+02     18          1.4958e+02   6.3954e-03   7.9255e-03   2.0297e+00   5.0147e+00   1.0000e-01
  128  00:00:05   2.1241e+02     19  HB      1.5008e+02   8.9103e-03   7.3970e-03   2.4663e+00   5.3325e+00   1.0000e-01
  130  00:00:05   2.1267e+02     20          1.5027e+02   9.8418e-03   7.3997e-03   2.5105e+00   5.3449e+00   1.0000e-01
  140  00:00:05   2.1648e+02     21          1.5299e+02   2.4432e-02   1.2090e-02   2.1633e+00   4.4052e+00   1.0000e-01
  150  00:00:06   2.1798e+02     22          1.5410e+02   3.0215e-02   1.4322e-02   1.4309e+00   2.9206e+00   1.0000e-01
  151  00:00:06   2.1798e+02     23  FP      1.5410e+02   3.0196e-02   1.4303e-02   1.4219e+00   2.9027e+00   1.0000e-01
  151  00:00:06   2.1798e+02     24  SN      1.5410e+02   3.0196e-02   1.4303e-02   1.4219e+00   2.9027e+00   1.0000e-01
  160  00:00:06   2.1705e+02     25          1.5347e+02   2.4198e-02   1.0472e-02   8.0375e-01   1.6776e+00   1.0000e-01
  170  00:00:07   2.1532e+02     26  FP      1.5226e+02   1.0769e-02   2.8653e-03   2.1546e-01   5.3421e-01   1.0000e-01
  170  00:00:07   2.1532e+02     27  SN      1.5226e+02   1.0769e-02   2.8653e-03   2.1546e-01   5.3421e-01   1.0000e-01
  170  00:00:07   2.1532e+02     28          1.5226e+02   1.0694e-02   2.8248e-03   2.1299e-01   5.2926e-01   1.0000e-01
  180  00:00:07   2.1540e+02     29          1.5231e+02   9.2526e-03   2.0721e-03   1.6824e-01   4.3812e-01   1.0000e-01
  190  00:00:08   2.1614e+02     30          1.5283e+02   6.5938e-03   8.8959e-04   1.0143e-01   2.8932e-01   1.0000e-01
  200  00:00:08   2.1805e+02     31          1.5418e+02   4.4740e-03   2.9387e-04   6.3268e-02   1.8878e-01   1.0000e-01
  210  00:00:08   2.2050e+02     32          1.5592e+02   3.2669e-03   1.1499e-04   4.5243e-02   1.3621e-01   1.0000e-01
  220  00:00:08   2.2341e+02     33          1.5797e+02   2.4913e-03   5.0867e-05   3.4287e-02   1.0337e-01   1.0000e-01
  228  00:00:09   2.2581e+02     34  EP      1.5967e+02   2.0856e-03   2.9774e-05   2.8651e-02   8.6370e-02   1.0000e-01

FRC in parametrisation space:

FRC in physical space: